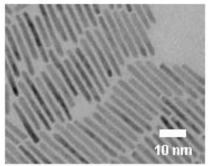
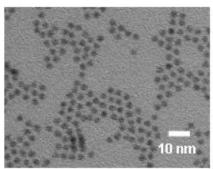
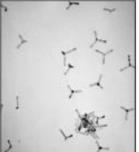
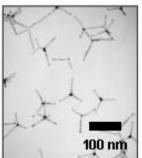
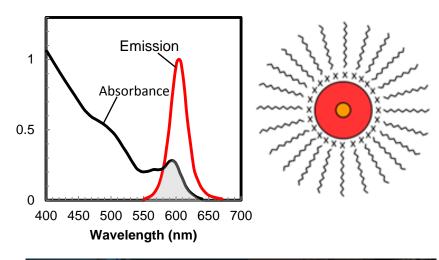

Quantum Dot Downconverters for Solid-State Lighting


Julian Osinski, Ph.D. VP of Product Marketing Pacific Light Technologies


DOE SSL R&D Workshop, Tampa, FL, January 28, 2014


QD Nanoparticle Emitters


CdS, CdSe, CdTe

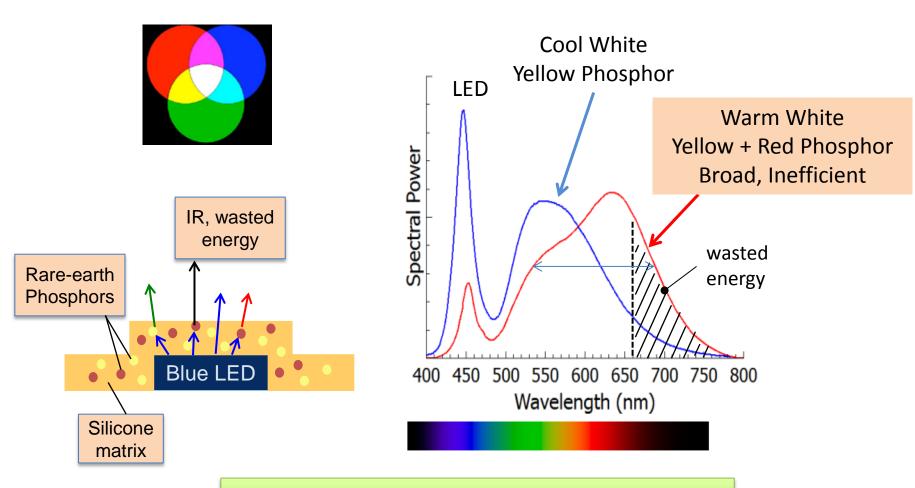


Murray, C. B.; Norris, D. J.; Bawendi, M. G. JACS, **1993**, 115, 8706 Alivisatos, A. P. *Nature Materials* **2003**, *2*, 382

Optical properties controlled by size, materials, shape

Advantages of QD downconverters

- Precise peak emission placement (± 2 nm)
- Very narrow emission peaks (< 35 nm)
- Fast radiative decay times—(ns compared to μs)
- Very high efficiencies
- Soluble--Composites can be clear


QD Synthesis

- Liquid phase inorganic chemistry synthesis process
- Low capital equipment and space requirements

White Light LEDs: How It's Done Today

Blue LEDs + Phosphors Produce White Light

Phosphors vs QDs

100

Phosphors—efficient, reliable track record, but:

- Spectral widths 80-100nm typically
- Limited choices of wavelengths
- Limited absorption bands
- Contains rare-earth elements
- IP licensing requirements

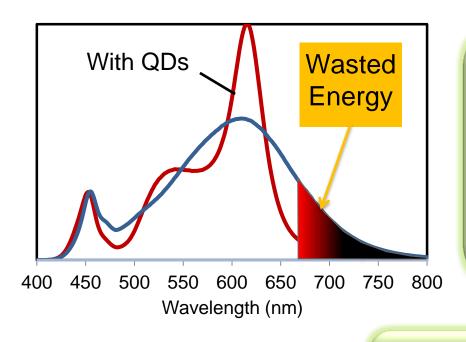
80 - 650 nm - 670 nm

Source: Internatix

620 nm

630 nm

Previous QD Challenges:


- Compatibility with silicones
- Sensitivity to moisture
- Sensitivity to high optical intensity/temperature
- QD self absorption
- High cost, especially for large area remote systems
- Cd-containing materials

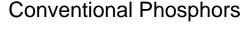
Why QDs in LEDs?

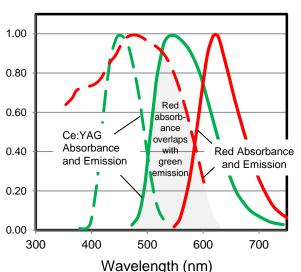
QDs Simultaneously Increase Efficacy and Improve Color Quality

- Red only or multi-color wavelengths where you want them
- Efficacy Improvements due to narrow spectrum: less wasted energy, 20-40% benefit
- Customizable spectrum allows improved CRI: >90 easily obtained

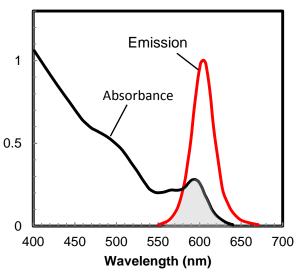
QDs Reduce System Cost

- Fewer LEDs required in a luminaire
- Smaller drivers and heatsinks required

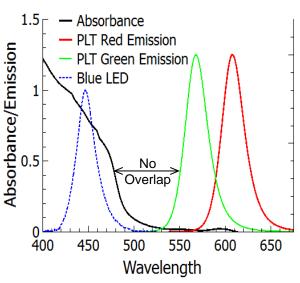

Efficiency Benefits


- Spectral efficiency benefits measured in Luminous Efficacy of Radiation (LER, lumens/optical watt)
- Luminous efficacy scales with LER at same quantum yield
- At downconverter quantum yield parity and cost parity, LER improvements translate directly to \$/lum savings
- For a high quality of light, this benefit can be >40%.

	LER (lumer	CCT = 3000K				
	Phosphor Solution	QD Solution	Benefit			
CRI = 80	300	370	>20%			
CRI = 95	250	360	>40%			
		Nominal lum/\$ increase				

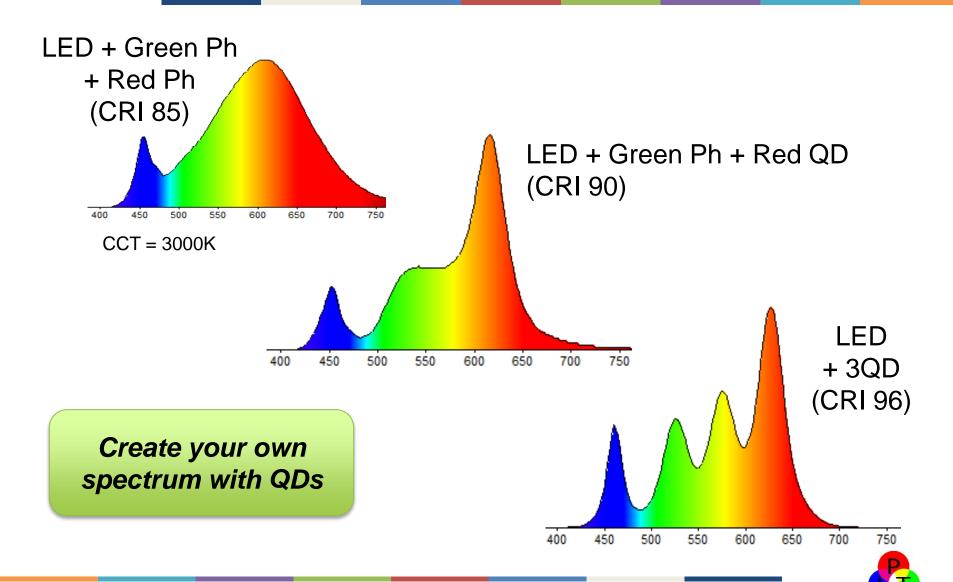


The Need for Low Self-Absorption Losses

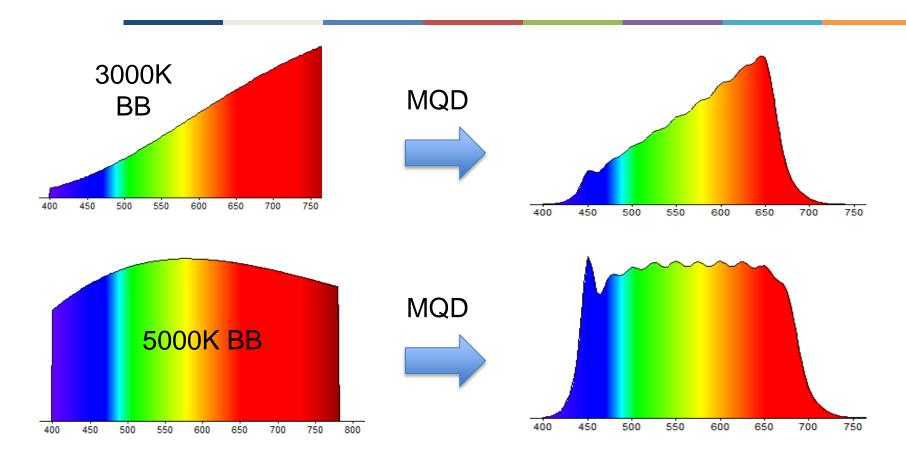


Conventional Quantum Dots

PLT Quantum Dots



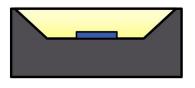
Elimination of self-absorption allows high concentrations and color combinations which are difficult to achieve with conventional phosphors and conventional QDs



8/29/13 9

Quantum Dots Allow Maximum Spectral Engineering Capability

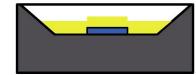
Quantum Dots ... Color where you want it



- Virtually any spectral shape, CCT, or CRI can be made
- Only achievable using QDs with low self-absorption

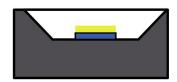
QDs in LED Packages

Dispersion:



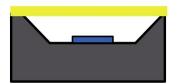
Dispersed Phosphor (Cree)

Conformal Coating Package level:



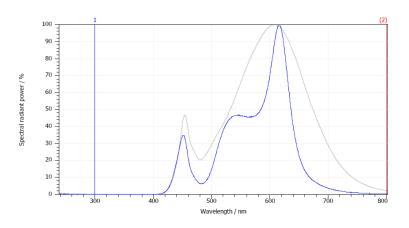
Conformal coating on a Luxeon Rebel by Philips Lumileds. The phosphor coating is visible under UV light

Conformal Coating or Pre-Form – Chip only:



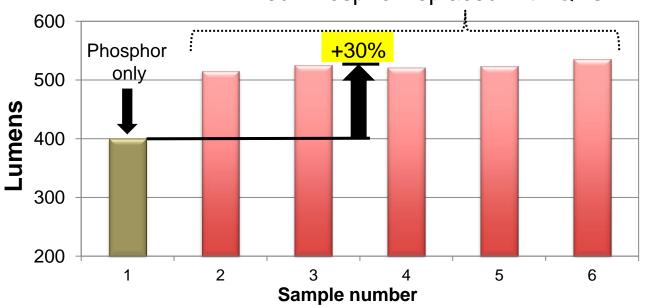
Amber emission with a ceramic nitride phosphor attached to a blue die (Philips Lumileds)

Remote Phosphor:


High Power LED with remote phosphor dome (Source: GE)

Source: Yole

Quantum dots must perform on-chip to contribute significantly to solid-state lighting



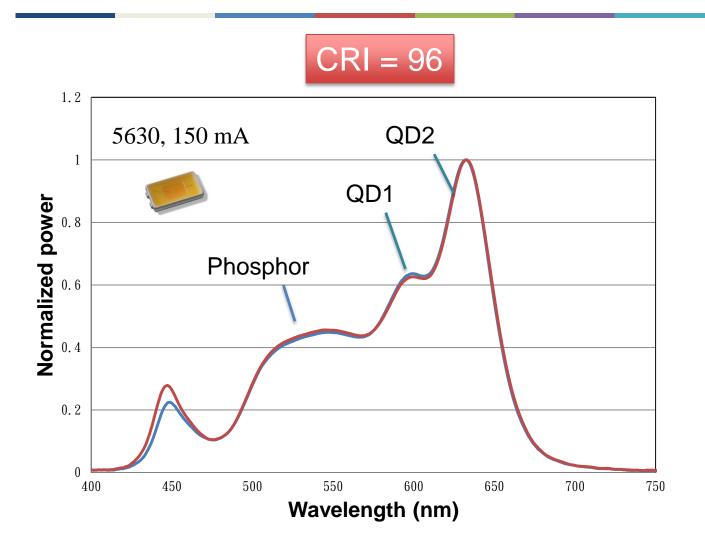
Example: 30% Efficacy Benefit

CCT ~ 3000 +/- 300K

CRI ~ 88 +/- 1

A19 Lamp Case Study: Reduced System Costs

- For 3000K, 90 CRI, 30% efficacy increase from a package means:
 - 30% higher lm/W and lm/\$
 - 23% lower driver costs
 - 23% lower heatsink costs
 - No additional control electronics needed, as for adding red LEDs
- A19 BOM:


	600 IIII LLD Lailip BOW							
	(conventional		with QDs	1			
		8 x 130 lm		6 x 167 lm				
LEDs	\$	2.16	\$	1.68	2	2%	savings	
Power supply	\$	1.53	\$	1.18	2	3%	savings	
Heat sink	\$	0.94	\$	0.72	2	3%	savings	
Driver	\$	0.66	\$	0.51	2	3%	savings	
Optic	\$	0.45	\$	0.45				
Other	\$	0.54	\$	0.54			1	
Tot	\$	6.28	\$	5.08	1	9%	lamp sav	ings
			\$	1.20	\$	1.20	tot saving	35

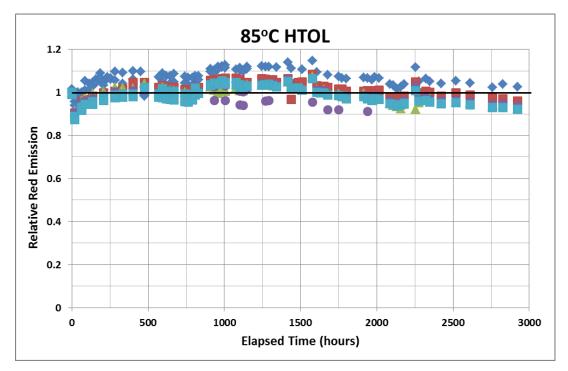
800 lm LFD Lamn ROM

Small LED premium gives 19% lamp cost reduction

High CRI using Phosphor + 2QDs

Key QD Operational Issues

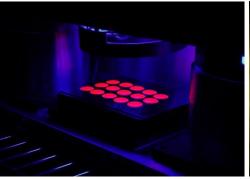
- Thermal quenching
 - How much does efficiency decrease with temperature?
 - Color shift, lumen depreciation can result
 - Need this as flat as possible to 120C+
- Optical flux intensity effects
 - Blue pump power exceeds 100 W/cm2 in high power packages
 - Must sustain operational flux density at high efficiency


See Wednesday panel for data and additional information!

Recent on-chip reliability results

- Type 5630 packages
- 85C ambient, QDs>100C
- Flux intensity ~50W/cm2
- Stable to >3000 hrs

Current/Future QD Directions


- QDs tailored for on-chip applications
 - Mid-power; 50W/cm2, >120C at downconverter
 - High-power; 150W/cm2, >150C at downconverter
- Wavelengths across the spectrum
- More materials work
 - Cd-free QDs

About PLT

- HQ in Portland, OR
- Founded May, 2011
- Founders and original IP from SpectraWatt
- 35 employees/consultants
- On-chip quantum dots the preferred solution

Thank you!

Julian Osinski, Ph.D.

Pacific Light Technologies

julian.osinski@pacificlighttech.com

Acknowledgements: Drs. Juanita Kurtin, Norbert Puetz, and the entire staff of Pacific Light Technologies

